On a Bijection between Littlewood-Richardson Fillings of Conjugate Shape

نویسندگان

  • Philip J. Hanlon
  • Sheila Sundaram
چکیده

We present a new bijective proof of the equality between the number of Littlewood-Richardson fillings of a skew-shape i/n of weight v, and those of the conjugate skew-shape A’/$, of conjugate weight v’. The bijection is defined by means of a unique permutation a,,, associated to the skew-shape i-/p. Our arguments use only well-established properties of Schensted insertion, and make no reference to jeu de taquin. % 1992 Academic Press, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Littlewood-Richardson fillings and their symmetries

Abstract Considering the classical definition of the Littlewood-Richardson rule and its 2-dimensional representation by means of rectangular tableaux, we exhibit 24 symmetries of this rule when considering dualization, conjugation and their composition. Extending the Littlewood-Richardson rule to sequences of nonnegative real numbers, six of these symmetries may be generalized. Our point is to ...

متن کامل

Equivariant Littlewood-richardson Skew Tableaux

We give a positive equivariant Littlewood-Richardson rule also discovered independently by Molev. Our proof generalizes a proof by Stembridge of the ordinary Littlewood-Richardson rule. We describe a weight-preserving bijection between our indexing tableaux and the Knutson-Tao puzzles.

متن کامل

ar X iv : 0 70 6 . 37 38 v 1 [ m at h . A G ] 2 6 Ju n 20 07 EQUIVARIANT LITTLEWOOD - RICHARDSON TABLEAUX

We give a positive equivariant Littlewood-Richardson rule also discovered independently by Molev. Our proof generalizes a proof by Stembridge of the ordinary Littlewood-Richardson rule. We describe a weight-preserving bijection between our indexing tableaux and the Knutson-Tao puzzles.

متن کامل

A Bijective Proof of the Second Reduction Formula for Littlewood-richardson Coefficients

There are two well known reduction formulae for structural constants of the cohomology ring of Grassmannians, i.e., LittlewoodRichardson coefficients. Two reduction formulae are a conjugate pair in the sense that indexing partitions of one formula are conjugate to those of the other formula. A nice bijective proof of the first reduction formula is given in the authors’ previous paper while a (c...

متن کامل

Linear time equivalence of Littlewood–Richardson coefficient symmetry maps

Benkart, Sottile, and Stroomer have completely characterized by Knuth and dual Knuth equivalence a bijective proof of the Littlewood–Richardson coefficient conjugation symmetry, i.e. cμ,ν = c t μt,νt . Tableau–switching provides an algorithm to produce such a bijective proof. Fulton has shown that the White and the Hanlon–Sundaram maps are versions of that bijection. In this paper one exhibits ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 60  شماره 

صفحات  -

تاریخ انتشار 1992